46 research outputs found

    A graph polynomial for independent sets of bipartite graphs

    Get PDF
    We introduce a new graph polynomial that encodes interesting properties of graphs, for example, the number of matchings and the number of perfect matchings. Most importantly, for bipartite graphs the polynomial encodes the number of independent sets (#BIS). We analyze the complexity of exact evaluation of the polynomial at rational points and show that for most points exact evaluation is #P-hard (assuming the generalized Riemann hypothesis) and for the rest of the points exact evaluation is trivial. We conjecture that a natural Markov chain can be used to approximately evaluate the polynomial for a range of parameters. The conjecture, if true, would imply an approximate counting algorithm for #BIS, a problem shown, by [Dyer et al. 2004], to be complete (with respect to, so called, AP-reductions) for a rich logically defined sub-class of #P. We give a mild support for our conjecture by proving that the Markov chain is rapidly mixing on trees. As a by-product we show that the "single bond flip" Markov chain for the random cluster model is rapidly mixing on constant tree-width graphs

    Inapproximability of the Partition Function for the Antiferromagnetic Ising and Hard-Core Models

    Full text link
    Recent inapproximability results of Sly (2010), together with an approximation algorithm presented by Weitz (2006) establish a beautiful picture for the computational complexity of approximating the partition function of the hard-core model. Let λc(TΔ)\lambda_c(T_\Delta) denote the critical activity for the hard-model on the infinite Δ\Delta-regular tree. Weitz presented an FPTAS for the partition function when λ<λc(TΔ)\lambda<\lambda_c(T_\Delta) for graphs with constant maximum degree Δ\Delta. In contrast, Sly showed that for all Δ3\Delta\geq 3, there exists ϵΔ>0\epsilon_\Delta>0 such that (unless RP=NP) there is no FPRAS for approximating the partition function on graphs of maximum degree Δ\Delta for activities λ\lambda satisfying λc(TΔ)<λ<λc(TΔ)+ϵΔ\lambda_c(T_\Delta)<\lambda<\lambda_c(T_\Delta)+\epsilon_\Delta. We prove that a similar phenomenon holds for the antiferromagnetic Ising model. Recent results of Li et al. and Sinclair et al. extend Weitz's approach to any 2-spin model, which includes the antiferromagnetic Ising model, to yield an FPTAS for the partition function for all graphs of constant maximum degree Δ\Delta when the parameters of the model lie in the uniqueness regime of the infinite tree TΔT_\Delta. We prove the complementary result that for the antiferrogmanetic Ising model without external field that, unless RP=NP, for all Δ3\Delta\geq 3, there is no FPRAS for approximating the partition function on graphs of maximum degree Δ\Delta when the inverse temperature lies in the non-uniqueness regime of the infinite tree TΔT_\Delta. Our results extend to a region of the parameter space for general 2-spin models. Our proof works by relating certain second moment calculations for random Δ\Delta-regular bipartite graphs to the tree recursions used to establish the critical points on the infinite tree.Comment: Journal version (no changes

    Swendsen-Wang Algorithm on the Mean-Field Potts Model

    Full text link
    We study the qq-state ferromagnetic Potts model on the nn-vertex complete graph known as the mean-field (Curie-Weiss) model. We analyze the Swendsen-Wang algorithm which is a Markov chain that utilizes the random cluster representation for the ferromagnetic Potts model to recolor large sets of vertices in one step and potentially overcomes obstacles that inhibit single-site Glauber dynamics. Long et al. studied the case q=2q=2, the Swendsen-Wang algorithm for the mean-field ferromagnetic Ising model, and showed that the mixing time satisfies: (i) Θ(1)\Theta(1) for β<βc\beta<\beta_c, (ii) Θ(n1/4)\Theta(n^{1/4}) for β=βc\beta=\beta_c, (iii) Θ(logn)\Theta(\log n) for β>βc\beta>\beta_c, where βc\beta_c is the critical temperature for the ordered/disordered phase transition. In contrast, for q3q\geq 3 there are two critical temperatures 0<βu<βrc0<\beta_u<\beta_{rc} that are relevant. We prove that the mixing time of the Swendsen-Wang algorithm for the ferromagnetic Potts model on the nn-vertex complete graph satisfies: (i) Θ(1)\Theta(1) for β<βu\beta<\beta_u, (ii) Θ(n1/3)\Theta(n^{1/3}) for β=βu\beta=\beta_u, (iii) exp(nΩ(1))\exp(n^{\Omega(1)}) for βu<β<βrc\beta_u<\beta<\beta_{rc}, and (iv) Θ(logn)\Theta(\log{n}) for ββrc\beta\geq\beta_{rc}. These results complement refined results of Cuff et al. on the mixing time of the Glauber dynamics for the ferromagnetic Potts model.Comment: To appear in Random Structures & Algorithm

    Inapproximability for Antiferromagnetic Spin Systems in the Tree Non-Uniqueness Region

    Full text link
    A remarkable connection has been established for antiferromagnetic 2-spin systems, including the Ising and hard-core models, showing that the computational complexity of approximating the partition function for graphs with maximum degree D undergoes a phase transition that coincides with the statistical physics uniqueness/non-uniqueness phase transition on the infinite D-regular tree. Despite this clear picture for 2-spin systems, there is little known for multi-spin systems. We present the first analog of the above inapproximability results for multi-spin systems. The main difficulty in previous inapproximability results was analyzing the behavior of the model on random D-regular bipartite graphs, which served as the gadget in the reduction. To this end one needs to understand the moments of the partition function. Our key contribution is connecting: (i) induced matrix norms, (ii) maxima of the expectation of the partition function, and (iii) attractive fixed points of the associated tree recursions (belief propagation). The view through matrix norms allows a simple and generic analysis of the second moment for any spin system on random D-regular bipartite graphs. This yields concentration results for any spin system in which one can analyze the maxima of the first moment. The connection to fixed points of the tree recursions enables an analysis of the maxima of the first moment for specific models of interest. For k-colorings we prove that for even k, in the tree non-uniqueness region (which corresponds to k<D) it is NP-hard, unless NP=RP, to approximate the number of colorings for triangle-free D-regular graphs. Our proof extends to the antiferromagnetic Potts model, and, in fact, to every antiferromagnetic model under a mild condition
    corecore